SYSTEMS OF POLYNOMIALS OVER FINITE FIELDS

KARIM JOHANNES BECHER

Abstract

We present a famous theorem about systems of polynomial equations over a finite field, the Chevalley-Warning theorem. We mention some questions of recent study in this context.

1. Introduction

Let F be a finite set and let $n, r \in \mathbb{N}$. We consider a function $g: F^{n} \rightarrow F^{r}$. We can ask what a value $g(x)$ tells us about the input $x \in F$, depending on our knowledge about the function g. Formally, we consider for a point $y \in F^{r}$ the preimage $g^{-1}(y)=\left\{x \in F^{n} \mid g(x)=y\right\}$, also called the fibre of y (w.r.t. g).

We will now delve into a context of algebra where the function g is given by some computation rule. We will then encounter some conditions on g that have a strong impact on the fibres and their cardinalities.

The context is that of a finite field. By a field, we mean a structure $(F,+, \cdot, 0,1)$ where F is a set, 0 and 1 are two different distinguished elements of F, and where + and \cdot are binary operations $F \times F \rightarrow F$ called addition and multiplication satisfying the usual rules of arithmetic. (By this, we mean that each of + and \cdot are commutative and associative and that together they satisfy the distributivity law, further that 0 and 1 are neutral elements for + and for \cdot, respectively, that elements of F have inverses for + and elements of $F \backslash\{0\}$ have inverses for the multiplication. This allows one to define the derived operations subtraction $-: F \times F \rightarrow F$ and inversion ${ }^{-1}: F \backslash\{0\} \rightarrow F$.)

Typical fields used in all areas of mathematics are \mathbb{Q} (the rational numbers), \mathbb{R} (the real numbers) and \mathbb{C} (the complex numbers). But there are also finite fields. Those are very interesting for applications, such as in cryptography. Note that the set of integers \mathbb{Z} satisfies most of the prerequisites of a field, but is lacking inverses for the multiplication.

We fix now a prime number p. Modular arithmetic for integers modulo p defines a field with p elements. As a set, this is $\{\overline{0}, \overline{1}, \ldots, \overline{p-1}\}$, where we define the operations just as for integers, but apply division with residue to any sum or product, so as to always end up with a computation result in this set. We denote this field by $\mathbb{Z} / p \mathbb{Z}$ or by \mathbb{F}_{p}.

These give a crucial class of examples of finite fields, which have a prime number as their cardinality. There also exists for any $k \in \mathbb{N} \backslash\{0\}$ a field with p^{k} elements,

Date: 20.11.2023.
and their construction is a bit more involved. In the sequel, the field \mathbb{F}_{p} may serve as a guiding example.

Given a field F, we can consider functions $g: F^{n} \rightarrow F^{r}$ given by polynomials. In fact, in the case where F is a finite field, all functions are given by the evaluation of some system of polynomials $g=\left(g_{1}, \ldots, g_{r}\right)$, that is, where $g_{i} \in F\left[X_{1}, \ldots, X_{n}\right]$ for $1 \leqslant i \leqslant r$, that is, g_{1}, \ldots, g_{r} are polynomials with coefficients in F in the variables X_{1}, \ldots, X_{n}. In our main case of interest, we can understand these polynomials given with coefficients in \mathbb{Z}. An example is $X_{1} X_{2}-4 X_{3}^{2}-3 X_{2} X_{4}$. A product $c X_{1}^{e_{1}} \cdots X_{n}^{e_{n}}$ with $\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{N}^{n}$ and $c \in F \backslash\{0\}$ is called a monomial, and we call the number $e=e_{1}+\cdots+e_{n}$ its degree. The degree of an arbitrary polynomial g is defined as the maximum of the degrees of the monomials that occur in it and denoted by $\operatorname{deg}(g)$.

2. The Chevalley-Warning theorems

Let p be a prime number and $F=\mathbb{Z} / p \mathbb{Z}$. Let $g_{1}, \ldots, g_{r} \in F\left[X_{1}, \ldots, X_{n}\right]$. Let $d=\operatorname{deg}\left(g_{1}\right)+\cdots+\operatorname{deg}\left(g_{r}\right)$. Consider the evaluation function

$$
g: F^{n} \rightarrow F^{r}, x \mapsto\left(g_{1}(x), \ldots, g_{r}(x)\right) .
$$

2.1. Theorem (Chevalley-Warning, 1935). Assume that $d<n$. For any $y \in F^{r}$, $\left|g^{-1}(y)\right|$ is a multiple of p, and if $g^{-1}(y) \neq \emptyset$, then $\left|g^{-1}(y)\right| \geqslant p^{n-d}$.

The proof is surprisingly simple. If makes crucial use of Fermat's Little Theorem, which says that $x^{p-1}=1$ for any $x \in F \backslash\{0\}$.

The proof can be reduced to the case where $n=d+1$. In that case, the theorem needs only to be proven for $y=0$. Indeed, if $y=\left(y_{1}, \ldots, y_{r}\right)$, we set $g_{i}^{\prime}=g_{i}-y_{i}$ for $1 \leqslant i \leqslant r$, and obtain for the resulting $g^{\prime}: F^{n} \rightarrow F^{r}$ the same degree and $g^{-1}(y)=g^{\prime-1}(0)$.

In the proof, one considers the Chevalley polynomial given by g, which is

$$
\chi_{g}=\Pi_{i=1}^{r}\left(1-g_{i}^{p-1}\right)
$$

It has $\operatorname{deg}\left(\chi_{g}\right)=d(p-1)$ and the curious property that, for any $x \in F^{n}$,

$$
\chi_{g}(x)= \begin{cases}1 & \text { if } g(x)=0 \\ 0 & \text { otherwise }\end{cases}
$$

A new proof of the refined statement above can be found in [1].
2.2. Theorem (Heath-Brown, 2011). Assume that $d<n$ and that $y \in F^{r}$ is such that $\left|g^{-1}(y)\right|=p^{n-d}$. Then $g^{-1}(y)$ is an $(n-d)$-dimensional affine subspace of F^{r}.
2.3. Theorem (Heath-Brown 2011, Leep-Petrik, 2023). Assume that $d<n$ and $p \geqslant 3$. Let $y \in F^{r}$. Then $g^{-1}(y)=\emptyset$ or $\left|g^{-1}(y)\right|=p^{n-r}$ or $\left|g^{-1}(y)\right| \geqslant 2 p^{n-r}$.

A particular study for the case $p=2$ was recently undertaken by D. Leep, reaching optimal results on the lowest possible cardinalities of the fibres larger than 2^{n-d}, for all pairs (n, d).
2.4. Theorem (Clark-Genao-Saia, 2021). Assume that $d=n$. For any $y, y^{\prime} \in F^{r}$, we have $\left|g^{-1}(y)\right| \equiv\left|g^{-1}\left(y^{\prime}\right)\right| \bmod p$. In particular, either $\left|g^{-1}(y)\right|$ is a multiple of p for all $y \in F^{r}$, or $g: F^{n} \rightarrow F^{r}$ is surjective.

In the case where $d=n$, sufficient conditions of a different type for all fibres having cardinality a multiple of p were given in [7, Theorem 3.1].

Most of the above results hold more generally for finite fields F with $p=|F|$ being a prime power. In that situation, the fact that in the case $d<n$ the fibres have cardinality divisible by p is more difficult, and goes back to [2].

For example, one can look at the field with 4 elements

$$
\mathbb{F}_{4}=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\} .
$$

Over this field, the Fermat cubic $g=X_{1}^{3}+X_{2}^{3}+X_{3}^{3}$ gives a nice example of a polynomial of degree 3 in 3 variables such that $g: F^{3} \rightarrow F$ is not surjective and the fibres have cardinality 28 and 36 .

References

[1] S. Asgarli. A new proof of Warning's second theorem. Amer. Math. Monthly 125 (2018) 549-553.
[2] J. Ax. Zeroes of polynomials over finite fields. Am. J. Math. 86 (1964) 255-261.
[3] C. Chevalley. Démonstration d'une hypothèse de M. Artin. Abh. Math. Semin. Univ. Hamb. 11 (1) (1935) 73-75.
[4] P.L. Clark, T. Genao, F. Saia. Chevalley-Warning at the boundary. Expo. Math. 39 (2021), 604-623.
[5] D.R. Heath-Brown. On Chevalley-Warning theorems. Usp. Mat. Nauk 66 (2(398)) (2011) 223-232.
[6] D.B. Leep, R.L. Petrik. Further improvements to the Chevalley-Warning theorems. Finite Fields Appl. 89 (2023), Paper No. 102194, 16 pp.
[7] H. Pasten. On the Chevalley-Warning theorem when the degree equals the number of variables. Combinatorica 42 (2022), 1481-1486.
[8] E. Warning. Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math. Semin. Univ. Hamb. 11 (1) (1935) 76-83.

University of Antwerp, Department of Mathematics, Middelheimlaan 1, 2020 Antwerp, Belgium.

Email address: karimjohannes.becher@uantwerpen.be

