Expressive power of graph neural networks

Floris Geerts

Relational databases \& Structured Query Language (SQL)

S	T
v1	v2
v2	v3
v3	v4
v4	v1
v2	v1
v3	v2
v4	v3
v1	v4

"Find all degree two vertices in a graph"
SELECT E1.S AS S
FROM E AS E1
WHERE 2= (SELECT COUNT(E2.T)
\quad FROM E AS E2 WHERE E2.S=E1.S);

Course: introduction to databases

S	T
v1	v2
v2	v3
v3	v4
v4	v1
v2	v1
v3	v2
v4	v3
v1	v4
v4	v5
v5	v4

SQL \& logic

- SQL: standardized query language for relational databases
- First-order predicate logic with aggregation: formal mathematical abstraction of SQL
- In this lecture: First-order predicate logic with counting quantifiers

```
SELECT E1.S AS S
FROM E AS E1
WHERE 2= (SELECT COUNT(E2.T)
    FROM E AS E2 WHERE E2.S=E1.S);
```

$$
\varphi(x)=\exists^{=2} y E(x, y)
$$

Logic example

$$
\begin{aligned}
\boldsymbol{\psi}=\exists & x\left(\exists^{\geq 3} y\left(E(x, y) \wedge \exists z\left(E(x, z) \wedge \exists^{=1} v E(z, v)\right)\right)\right. \\
& \exists^{\geq 3} y\left(E(x, y) \wedge \exists z\left(E(x, z) \wedge \exists^{=1} v E(z, v)\right)\right)
\end{aligned}
$$

$\boldsymbol{G} \vDash \psi$ or \mathbf{G} satisfies ψ

Optimization: only two variables are needed

$$
\exists x\left(\exists^{\geq 3} y(\boldsymbol{E}(x, y)) \wedge \exists y\left(\boldsymbol{E}(x, y) \wedge \exists^{=1} x(\boldsymbol{E}(y, x))\right)\right)
$$

FOC ${ }_{k}=k$-variable fragment of first order logic with counting quantifiers

Expressive power

- Interested in which properties can or cannot be expressed in SQL
- From SQL to Logic: Expressive power of logics
- Given two graphs, do they satisfy the same logic sentences?
- Given a graph property, e.g., is a graph connected, can this be expressed by a logic formula?
- Insights in these questions give insights in capabilities of practical query languages and drives innovation.

Expressive power of logics

- Many many many different logics around (not only in query languages)
- Determining whether two objects are equivalent for a logic, i.e., whether one cannot detect a difference between the two objects using formulas in the logic, is one of the basic problems.
- Computationally: complexity of deciding equivalence
- Conceptually: characterization of equivalence
- Mathematically: tools (games, finite model theory, ...) to analyze logics

Let us focus on FOC_{2}

FOC ${ }_{2}$ \& color refinement

Theorem

Two graphs cannot be told apart using sentences in FOC_{2} if and only if they are equivalent with regards to color refinement (if and only if Duplicator has a winning strategy in the bijective two-pebble game).

Color refinement

$O=(\bigcirc,\{\bigcirc, \bigcirc\})$
$=(0,\{0, \bigcirc\})$
$\bigcirc=(0,\{0, \bigcirc, \bigcirc\})$
$=(O,\{O\})$

Color refinement example

G and H are equivalent for color refinement

G and H are equivalent for FOC_{2}
FOC_{2} not powerful enough to express connectivity or checking for cycles...
= degree two

Color refinement example

G and H are not equivalent for color refinement

G and H are not equivalent for FOC_{2}

$\operatorname{colors}(H)=\{0,0,0,0, \quad\}$
E.g., $\exists^{=1} x \neg \exists^{>0} y E(x, y)$

Color refinement

- Provides a complete (and easy to check) characterization of FOC_{2} equivalence
- Similar characterizations are in place for $\mathrm{FOC}_{\mathrm{k}}$ in terms of k-dimensional Weisfeiler-Leman algorithm
- Color refinement (and k-WL) play a crucial role in graph isomorphism testing

Graph neural networks (GNN)

- Iterative, layer based embedding computation

$$
e m b^{t+1}(x)=U P D_{\Theta}\left(e m b^{t}(x), A G G_{\Gamma}\left(e m b^{t}(y) \mid E(x, y)=1\right)\right)
$$

- UPD is learnable update function
- AGG is learnable aggregation function

Expressive power of GNNs

- When can two vertices be embedded differently by a GNN?

FOC ${ }_{2}$ \& color refinement

Theorem

$(G, v) \vDash \varphi^{a}$ and $(G, w) \vDash \varphi^{a} \Rightarrow e m b(G, v)=e m b(G, w)$

Corollary

If color refinement cannot distinguish G from H then neither can any GNN!
Suppose emb(G, v) not equal to emb(G, w) for some GNN, then (G, v) satisfies some φ^{a} in infinitary FOC_{2} while (G, w) does not. This implies that (G, v) satisfies some $\mathrm{FOC}_{2} \psi^{a}$ while (G, w) does not.
But if color refinement does not distinguish G from H then G and H must satisfy the same formulae, including ψ^{a}.

Conclusion

- Expressive power of logics not only of interest for query languages also for GNNs
- Expressive power of $k-G N N s$ related to that of $\mathrm{FOC}_{\mathrm{k}}$ for $\mathrm{k}>1$
- $\mathrm{FOC}_{\mathrm{k}}$ is less expressive than $\mathrm{FOC}_{\mathrm{k}+1}$
- Connection with logic has resulted in many new GNNs based with higher expressive power

