

# Expressive power of graph neural networks

**Floris Geerts** 

#### **Relational databases & Structured Query Language (SQL)**

|            | Т  | ``Find all de | egree two v | vertices i | n a graph''     | S       |
|------------|----|---------------|-------------|------------|-----------------|---------|
|            | v2 | SELECT E1.S   | S AS S      |            |                 | v1      |
| 2          | v3 | FROM E AS     | E1          |            |                 | v2      |
|            | v4 | WHERE 2=      | •           | •          | · ·             | v3      |
| <b>′</b> 4 | v1 |               | FROM E A    | AS E2 WH   | IERE E2.S=E1.S) | ;<br>v4 |
| 2          | v1 | 0-0           | S           | S          | <b>n</b> 0      | v2      |
| /3         | v2 | ĬĬ            | v1          | v1         | ĬĬ              | v3      |
| /4         | v3 | 3-4           | v2          | v2         | 3-4             | v4      |
| /1         | v4 |               | v3          | v3         | 6               | v1      |
|            |    |               | v4          |            |                 | v4      |
|            |    | Courses intro |             |            |                 | v5      |

#### **Course: introduction to databases**

## **SQL & logic**

- SQL: standardized query language for relational databases
- First-order predicate logic with aggregation: formal mathematical abstraction of SQL
- In this lecture: First-order predicate logic with counting quantifiers

SELECT E1.S AS S FROM E AS E1 WHERE 2= (SELECT COUNT(E2.T) FROM E AS E2 WHERE E2.S=E1.S);

$$\varphi(x) = \exists^{=2} y E(x, y)$$





#### Logic example

 $\psi = \exists x (\exists^{\geq 3} y (E(x, y) \land \exists z (E(x, z) \land \exists^{=1} v E(z, v)))$ 

 $\exists^{\geq 3} y \left( E(x, y) \land \exists z (E(x, z) \land \exists^{=1} v \ E(z, v)) \right)$ 



**Optimization: only two variables are needed** 

 $\exists x (\exists^{\geq 3} y(E(x, y)) \land \exists y(E(x, y) \land \exists^{=1} x (E(y, x))))$ 

FOC<sub>k</sub> = k-variable fragment of first order logic with counting quantifiers



#### **Expressive power**

- Interested in which properties can or cannot be expressed in SQL
- From SQL to Logic: Expressive power of logics
- Given two graphs, do they satisfy the same logic sentences?
- Given a graph property, e.g., is a graph connected, can this be expressed by a logic formula?
- Insights in these questions give insights in capabilities of practical query languages and drives innovation.



## **Expressive power of logics**

- Many many many different logics around (not only in query languages)
- Determining whether two objects are *equivalent* for a logic, i.e., whether one cannot detect a difference between the two objects using formulas in the logic, is one of the basic problems.
- Computationally: complexity of deciding equivalence
- Conceptually: characterization of equivalence
- Mathematically: tools (games, finite model theory, ...) to analyze logics



# FOC<sub>2</sub> & color refinement

#### Theorem

Two graphs cannot be told apart using sentences **in FOC<sub>2</sub>** if and only if they are equivalent with regards to **color refinement** (if and only if Duplicator has a winning strategy in **the bijective two-pebble game**).

#### **Color refinement**





#### **Color refinement example**



#### **Color refinement example**





## **Color refinement**

- Provides a complete (and easy to check) characterization of FOC<sub>2</sub> equivalence
- Similar characterizations are in place for FOC<sub>k</sub> in terms of k-dimensional Weisfeiler-Leman algorithm
- Color refinement (and k-WL) play a crucial role in graph isomorphism testing



## **Graph neural networks (GNN)**



Iterative, layer based embedding computation

 $emb^{t+1}(x) = UPD_{\Theta}(emb^{t}(x), AGG_{\Gamma}(emb^{t}(y)|E(x,y)=1))$ 

- UPD is learnable update function
- AGG is learnable aggregation function



#### **Expressive power of GNNs**

When can two vertices be embedded differently by a GNN?





## FOC<sub>2</sub> & color refinement

#### Theorem

 $(G, v) \vDash \varphi^a \text{ and } (G, w) \vDash \varphi^a \Rightarrow emb(G, v) = emb(G, w)$ 

#### Corollary

If color refinement cannot distinguish G from H then neither can any GNN!

Suppose emb(G,v) not equal to emb(G,w) for some GNN, then (G,v) satisfies some  $\varphi^a$  in infinitary FOC<sub>2</sub> while (G,w) does not. (G,v) satisfies some FOC<sub>2</sub>  $\psi^a$  while (G,w) does not. But if color refinement does not distinguish G from H then G and H must satisfy the same formulae, including  $\psi^a$ .





## Conclusion

- Expressive power of logics not only of interest for query languages also for GNNs
- Expressive power of k-GNNs related to that of FOC<sub>k</sub> for k>1
- FOC<sub>k</sub> is less expressive than FOC<sub>k+1</sub>
- Connection with logic has resulted in many new GNNs based with higher expressive power



