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The plan is to

• introduce graph learning and generalisation;

• recall expressiveness of graph learning methods; and

• combine the two.

Main source: WL meet VC by Christopher Morris, Floris Geerts, Jan Tönshoff & Martin Grohe. In Proc. of ICML 2023, pp 25275-25302.
https://proceedings.mlr.press/v202/morris23a/morris23a.pdf

https://proceedings.mlr.press/v202/morris23a/morris23a.pdf


A bit of graph learning theory

• Let G be the set of all graphs and let Y be a set of labels.

• We are given some training data T , i.e., elements (G1, y1), . . . , (Gm, ym) in G ×Y.

• We are given some class H of graph classifiers h ∶ G → Y, or more generally, graph
embedding methods.

Learning=Empirical Risk Minimisation (ERM)

Find the best graph classifier from H for the training data T , that is, return

h⋆T ∶= arg min
h∈H

LT (h)

with LT (⋅) the empirical loss function given by

LT (h) ∶=
1

m

m

∑
i=1

1[h(Gi) ≠ yi ].

See also: Theory of graph neural networks: Representation and learning by Stefanie Jegelka. In Int. Cong. Math. 2022, Vol. 7, pp.
5450–5476. https://doi.org/10.4171/icm2022/162

https://doi.org/10.4171/icm2022/162


A bit of graph learning theory

• Let assume we have some training data T : Example 2
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A bit of graph learning theory

• The red hypothesis h makes us very happy: LT (h) = 0! Example 2
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A bit of graph learning theory

• But perhaps a bit of error is fine...

Example 2

Ê

Ê
Ê Ê

Ê

Ê

AlgDS SS 2019, M. Grohe Page 1.15 Version 3rd May 2019

G

Y

h

●

●



A bit of graph learning theory

• Just making predictions for elements in the training data is not so interesting.

• One is more interested in predicting the labels of graphs that are not part of the
training data.

• Let us assume a distribution D over the product space G ×Y.

Risk Minimisation

Find the best graph classifier from H over all input elements, that is

ĥD ∶= arg min
h∈H

LD(h)

with LD(⋅) the population risk (expected loss) given by

LD(h) ∶= Prob(G ,y)∼D[h(G) ≠ y].

Caveat: We don’t know D.



What is generalisation?

• A class H has good generalisation if the empirical risk classifier h⋆T approximates
the expected risk classifier ĥD well, and this with a small number of training data.

We are interested in bounding the generalisation error, defined as

LD(h) − LT (h),

for h ∈H in terms of e.g., training size m or some complexity measure of the underlying
hypothesis class H.

Example complexity measures are the Vapnik-Chervonenkis (VC) dimension, Radema-
cher complexity, robustness, ..



VC dimension

• For simplicity, assume binary classification from now on, i.e., Y = {0,1}.

• A set G1, . . . ,Gd is shattered by a class H of graph classifiers, if for any labeling
y1, . . . , yd , there is a graph classifier h ∈H such that h(G1) = y1, . . . ,h(Gd) = yd .

• VC dimension of H is maximal number of graphs that can be shattered.



VC dimension & generalisation error

Theorem (Vapnik&Chervonenkis-1964)

For δ > 0, with probability 1 − δ, for all h ∈H:

LD(h) − LT (h) ≤
√

2d log em
d

m
+

¿
ÁÁÀ log 1

δ

2m
,

were d is the VC dimension of H.

• Large VC dimension d implies need for large training set to reduce overfitting.

• Note d ≤ em for this bound to make sense.

See also: The uniform convergence of frequencies of the appearance of events to their probabilities by Vladimir Vapnik and Alexey Cervonenkis.
In Dokl. Akad. Nauk SSSR, 181, 4, 1968. English version appeared in Theory of Probability & Its Applications, 16 (2), pp 264–280, 1971.
https://doi.org/10.1137/1116025

https://doi.org/10.1137/1116025


Questions

• Can we say more about VC dimension of graph embedding methods?

• Can we connect this to expressiveness of these methods?



Graph isomorphism

• Let G = (V (G),E(G)) and H = (V (H),E(H)) be two graphs. An isomorphism
from G to H is an edge-preserving vertex bijection.

• That is, a bijection f ∶ V (G)→ V (H) such that

(v ,w) ∈ E(G)⇐⇒ (f (v), f (w)) ∈ E(H)
holds. We write G ≅ H if such an isomorphism exists, and say that G and H are
isomorphic.

Isomorphism-based Approaches Graph isomorphism

Graph Isomorphism

Graph Isomorphism

Let G = (VG , EG ) and H = (VH , EH) be simple graphs. A bijective
mapping ⇡ : VG ! VH is called graph isomorphism if the following holds:

8 v , w 2 VG : (v , w) 2 EG () (⇡(v),⇡(w)) 2 EH

G H

) Natural extension to graphs with labels and attributes
Two graphs are called isomorphic (G1 ' G2), if a graph isomorphism exists.

15 / 62



Graph isomorphism problem

Decide whether two graphs are isomorphic.

• Complexity: open

• Quasi-polynomial algorithm npoly(log(n)) (Babai 2015/2017)

Isomorphism-based Approaches Graph isomorphism

Graph Isomorphism

Graph Isomorphism

Let G = (VG , EG ) and H = (VH , EH) be simple graphs. A bijective
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8 v , w 2 VG : (v , w) 2 EG () (⇡(v),⇡(w)) 2 EH

G H

) Natural extension to graphs with labels and attributes
Two graphs are called isomorphic (G1 ' G2), if a graph isomorphism exists.
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Graph learning methods

• In graph learning, as mentioned, the hypothesis class H consists of graph classifiers
or, more generally, embedding methods h ∶ G → Y; Similar notions are in place for
vertex and k-tuple of vertex embeddings used in e.g., link prediction.

• A crucial property of classes H used in graph learning is that whenever two graphs
G and H are isomorphic, i.e., G ≅ H, then h(G) = h(H). That is, H consists of
invariant embeddings.

• Indeed, one does not want to learn things that depend on the graph representation,
e.g., on the order of vertices when building an adjacency matrix of a graph.



Distinguishing power

• Measured in terms of which pairs of inputs (graphs) can be distinguished/separated
by elements in H.

• We define ρ(H) ∶= {(G ,H) ∈ G × G ∣ ∃h ∈H s.t. h(G) ≠ h(H)}.

• Hypothesis class H is more expressive than H′ if ρ(H′) ⊆ ρ(H).

• For any invariant H, ρ(H) ⊆ ρ(ISO) where ISO refers to graph isomorphism test,
e.g., assigning the the isomorphism type to each graph. In this case, ρ(H) consists
of all pairs of non-isomorphic graphs.

• In the machine learning literature, ρ(H) is well-understood for various classes of
graph learning methods.



A first observation

• The VC dimension of a class H is bounded by the distinguishing power of the class.

• Indeed, let B the maximal degree of ρ(H) (viewed as a graph); This implies that
that there is no graph G that can be distinguished from more than B graphs
G1, . . . ,GB by elements in H.

Proposition

We have VCD(H) ≤ B + 1

• Indeed, it is impossible shatter more that B + 1 graphs using elements from H.

• We will use the notation VCDX (H) for the VC dimension of H restricted to inputs
in X ⊆ G.



Let us zoom in into some specific class H: Message-Passing Neural Networks (MPNNs)



Simple MPNNs

GNN(d ,L): L-layered Graph Neural Networks of width d

• Vertex level:

F (0)(G , v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈Rd

F (t)(G , v) = σ
⎛
⎜⎜
⎝
W
(t)
1

²
d×d

F (t−1)(G , v) + W
(t)
2

²
d×d

∑
w∈N(G ,v)

F (t−1)(G ,w)
⎞
⎟⎟
⎠
∈ Rd

• Graph level:

F (G) = σ(W∑
v

F (L)(G , v) + b)



Message-passing graph neural networks

MPNN(d ,L): L-layered Message-Passing Neural Network of width d .

• Vertex level:

F (t)(G , v) = UPD(t)(F (t−1)(G , v),AGG(t)({{F (t−1)(G ,w) ∣ w ∈ N(G , v)}}))

• Graph level:

F (G) = READOUT({{F (L)(G , v) ∣ v ∈ V }})



1-dim. Weisfeiler-Leman algorithm

Heuristic for graph isomorphism testing

1-dim. Weisfeiler-Leman algorithm

• Iteration: Two vertices get identical colours iff their coloured neighbourhoods are
identical

Two graphs are distinguished by 1-WL if they have different colour histograms.

Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Isomorphism Test using Weisfeiler-Leman

One-Sided Isomorphism Test

Apply WL to the two graphs G and H simultaneously

If G and H get di↵erent colors =) G 6' H

) WL distinguishes G and H

Otherwise: we do not know whether G and H are isomorphic

G H G H G H
Initialization Iteration 1 Iteration 2

11 / 46

• One side graph isomorphism test. If histograms differ, then non-isomorphic.



1-dim. Weisfeiler-Leman algorithm

Weisfeiler-Leman Algorithm and its Properties Weisfeiler-Leman Algorithm

Isomorphism Test using Weisfeiler-Leman

G H

Properties of WL

WL can identify all forests, i.e., non-isomorphic forests get di↵erent
colors

random graphs G will be identified correctly with high probability

running time: O((|V | + |E |) log |V |)
cannot distinguish regular graphs (same degree) ! same color

12 / 46



Relationship between 1-WL and GNNs

Theorem

MPNNs are bounded in expressive power by 1-WL, that is, ρ(MPNNs) ⊆ ρ(1-WL).

Since GNNs ⊆ MPNNs, also GNNs are bounded by 1-WL.

Theorem

There exists a GNN architecture and corresponding weights such that it has the same
power as the 1-WL. Hence, ρ(1-WL) ⊆ ρ(GNNs).

As a consequence, ρ(1-WL) = ρ(GNNs) = ρ(MPNNs).
Moreover, L iterations of 1-WL corresponds to L layers in the GNNs.



VC Dimension of GNNs when fixing graph size

• Let Gn,d be a set of graphs order n with d-dimensional boolean vertex features.

• Let mn,d ,L be the number 1-WL-distinguishable graphs in Gn,d after L iterations of
1-WL.

Theorem

For all n, d , and L > 0, all mn,d ,L 1-WL-distinguishable graphs of order n with d-
dimensional boolean features can be shattered by sufficiently wide L-layer GNNs using
piecewise linear activation functions. Hence,

VCDGd,n(GNN(L)) = mn,d ,L.

• Sufficiently wide means d ∈ O(nmn,d ,L).1

• Without restrictions on width and size on graphs, VC dimension of GNNs and
MPNNs is ∞

1
Can be improved by recent result. On dimensionality of feature vectors in MPNNs by César Bravo, Alexander Kozachinskiy & Cristobal Rojas.

In Proc. ICML 2024. https://openreview.net/forum?id=UjDp4Wkq2V

https://openreview.net/forum?id=UjDp4Wkq2V


VC Dimension of GNNs: Uniform case – Bounded bitlength

What if we restrict width, but arbitrary size graphs? Also here, VC dimension is ∞.
Based on result for GNNs whose weights have fixed bitlength b.

Theorem

There exists a family Fb of simple 1-layer GNNs of width one and bitlength O(b) using
piece-wise linear activation functions such that its VC dimension is exactly b.

Letting b →∞ results in infinite VC dimension, even for width one GNNs but unbounded
bitlength.



VC Dimension of GNNs: Color complexity

• We now consider the class Gd ,≤u consisting of graphs having d-dimensional features
and color complexity at most u

• Color complexity = number of colors used by 1-WL.

Theorem

Assume d and L in N, and GNNs in GNNslp(d ,L) using piece-wise polynomial activation
functions with p > 0 pieces and degree δ ≥ 0. Let P = d(2dL+ L+ 1)+ 1 be the number
of parameters in the GNNs. For all u in N,

VCDGd,≤u(GNNslp(d ,L)) ≤
⎧⎪⎪⎨⎪⎪⎩

O(LP log(puP)) if δ = 1,

O(LP log(puP) + L2P log(δ)) if δ > 1.

• Dependency on u cannot be improved: tight w.r.t. color complexity.



Commentary

• Most of the results extend easily to higher-order MPNNs.

• According to theory, VC dimension increases with expressive power of H.

• If our domain of graphs has low 1-WL complexity, less training data is needed to
get good generalisation. (Think of regular graphs!)

• This may need more investigation.

End of story?



Margin-based bounds (very rough slide)

• It was experimentally shown that adding power not always results in worse genera-
lisation.

• Generalisation error bounds exist in terms of VC dimension and margin, the latter
being the minimal distance to decision boundaries.

• The larger the margin, the lower generalisation error.

• So, two classes with same VC dimension may behave differently depending on
margins obtained.

We can thus obtain a more fine-grained view of VC dimension in the graph setting.

Weisfeiler-Leman at the margin: When more expressivity matters by Billy Joe Franks, Christopher Morris, Ameya Velingker & Floris Geerts. In
Proc. of ICML, 2024. https://openreview.net/forum?id=HTNgNt8CTJ

Towards Bridging Generalization and Expressivity of Graph Neural Networks. Shouheng Li, Dongwoo Kim, Qing Wang, Floris Geerts.
Proceedings of 13th International Conference on Learning Representations (ICLR), 2025

https://openreview.net/forum?id=HTNgNt8CTJ


Other techniques/questions

• Robustness framework of Xu & Manor (2010). Ongoing work to bound covering
numbers of graph spaces relative to graph learning method and metric.

• Analysing the Graph Neural Tangent Kernel in order to obtain conditional expres-
siveness results.

• When GNNs are combined, stacked, etc, i.e., when we have an algebra of GNNs,
how does VC dimension change under such operations?

For robustness: Robustness and generalization by Huan Xu & Shie Mannor. In Mach. Learn, 86, pp. 391â423 (2012).
https://doi.org/10.1007/s10994-011-5268-1

Covered Forest: Fine-grained generalization analysis of graph neural networks. Antonis Vasileiou, Ben Finkelshtein, Floris Geerts, Ron Levie,
Christopher Morris, under review, 2025.

https://doi.org/10.1007/s10994-011-5268-1

