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Gwenaël Joret
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Graphs?

Graphs can be undirected or directed

They can be simple or have loops and parallel

edges

They can be finite or infinite

In this talk: ”graph” = undirected finite simple graph



Planar graphs

A graph is planar if it can be drawn in the plane without edge

crossings



Classic results about planar graphs

Four Color Theorem

Every planar graph can be colored using four colors

▶ Conjectured in 1852 by Francis Guthrie

▶ First computer-assisted proof by Appel and Haken (1970s)

▶ Second computer-assisted proof by Roberston, Sander,

Seymour, Thomas (1996)

▶ Formal proof using Coq by Gonthier (2008)



Circle Packing Theorem

Every planar graph admits a “kissing coins” representation

▶ First proved by Koebe (1936)

▶ Rediscovered and generalized by Thurston (1980s)



G H

H minor of G if H can be obtained from a subgraph of G by

contracting edges

Kuratowski - Wagner 1930s

A graph G is planar ⇔ G contains neither K5 nor K3,3 as minor



Graph Minor Theorem

Graph property P

P is minor-closed if G has property P ⇒ all minors of G have

property P

Robertson & Seymour 1970s–2004

For every minor-closed graph property P there exists a finite set

FP of graphs s.t. for every graph G : G has property P ⇔ G has

no minor in FP

Proof over 600 pages

Results in existence of a polynomial-time algorithm for testing

whether G has property P
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Separators

S

≤ n/2

A separator of an n-vertex graph G is a vertex subset S such that

every connected component of G − S has ⩽ n/2 vertices



Separators in trees

T n-vertex tree

Fact: ∃ vertex v which is a separator of T

v

≤ n/2

≥ n/2

≤ n/2

≤ n/2

≤ n/2



Separators in planar graphs

S

≤ n/2

Lipton & Tarjan 1979

Every n-vertex planar graph has a separator of size O(
√
n)



Using Lipton-Tarjan separators
Keep decomposing until each piece has size ⩽ k

∣∣∣⋃ separators
∣∣∣ = O (

n√
k

)



Example: Maximum Independent Set problem

Independent set: Set of vertices, no two of which are adjacent

Maximum Independent Set problem on n-vertex graph G :

▶ NP-hard

▶ NP-hard to find a solution of size ⩾ ε ·OPT ∀ε > 0

▶ NP-hard to find a solution of size ⩾ 1
n1−ε ·OPT ∀ε > 0

(Zuckerman, 2007)

If G is planar: Problem is still NP-hard but . . .
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Keep decomposing until each piece has size ⩽ k

∣∣∣⋃ separators
∣∣∣ = O (

n√
k

)

Maximum Independent Set problem: OPT ⩾ n/4

take k = log n, solve problem exactly on each piece

discard
⋃
separators, of size O

(
n√
log n

)
⇒ solution has size ⩾ OPT −O

(
n√
log n

)
⩾

(
1− c√

log n

)
OPT

for some c > 0
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Independent sets in trees

Maximum Independent Set can be solved in polynomial time on

trees using dynamic programming



k-Trees

Inductive definition of k-trees (illustrated for k = 3):
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k-Trees

Inductive definition of k-trees (illustrated for k = 3):

Treewidth of G : Smallest k s.t. G subgraph of a k-tree

Treewidth is a measure of similarity with a tree (the lower the

better)

Most algorithmic problems can be solved on polynomial time on

graphs with bounded treewidth using dynamic programming

(Maximum Independent Set, Minimum Coloring, Traveling

Salesman Problem, ...)



Treewidth

Lemma: If G has treewidth ⩽ k then G has separator S of size

⩽ k

Dvǒrák, Norin 2019

If all subgraphs of G have separators of size ⩽ k then G has

treewidth ⩽ 15k

small treewidth ⇔ small separators
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Treewidth
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Planar graphs can have large treewidth

treewidth
√
n



Baker’s technique (1994)

2

3

4

5

1

Baker + Eppstein 1990s

Union of ℓ consecutive layers has treewidth ⩽ 3ℓ



Baker’s technique (1994)

2

3

4

5

1

Remove all layers numbered i

mod k

Choose i so that ⩽ n/k vertices

are removed

Solve problem on remaining

graph, which has treewidth

O(k)



Baker’s technique (1994)

2

3

4

5

1
i = 1, k = 3

Remove all layers numbered i

mod k

Choose i so that ⩽ n/k vertices

are removed

Solve problem on remaining

graph, which has treewidth

O(k)



Baker’s technique (1994)

2

3

5

1
i = 1, k = 3

Remove all layers numbered i

mod k

Choose i so that ⩽ n/k vertices

are removed

Solve problem on remaining

graph, which has treewidth

O(k)



Baker’s technique (1994)

2

3

5

1
i = 1, k = 3

Remove all layers numbered i

mod k

Choose i so that ⩽ n/k vertices

are removed

Solve problem on remaining

graph, which has treewidth

O(k)

With k = log n, this gives a solution of size ⩾
(

1− c
log n

)
OPT

for Maximum Independent Set



Baker ⇒ Lipton-Tarjan

2

3

4

5

1
i = 1, k = 3

Take k =
√
n, choose i so that ⩽ n/k =

√
n vertices are removed

Remaining graph has treewidth O(k) = O(
√
n)

Take a separator S ′ of size O(
√
n) in remaining graph

Union of vertices removed and S ′ is a separator of size O(
√
n)



A new way of decomposing planar graphs

Dujmović, J., Micek, Morin, Ueckerdt, Wood 2019

Every planar graph is a subgraph of H ⊠ P for some graph H

with treewidth ⩽ 8 and some path P

� =



A new way of decomposing planar graphs

Dujmović, J., Micek, Morin, Ueckerdt, Wood 2019

Every planar graph is a subgraph of H ⊠ P for some graph H

with treewidth ⩽ 8 and some path P

� =



H

�⊆

P
G



Product structure ⇒ Baker

� =

Union of ℓ consecutive layers has treewidth ⩽ 9ℓ



Applications of product structure

▶ Queue-numbers

▶ Nonrepetitive coloring

▶ p-centered coloring

▶ Subgraph isomorphism

▶ Extensions to other graph classes (bounded genus, k-planar,

· · · )
▶ Adjacency labeling schemes

▶ · · ·

New research direction, lots to explore



Application: Nonrepetitive colorings

k k
repetitively colored path

Vertex coloring nonrepetitive if ∄ repetitively colored paths

�
�

�
Conjecture (Alon, Grytczuk, Ha luszczak, Riordan 2002)

Planar graphs have bounded nonrepetitive chromatic number

Kündgen & Pelsmayer 2008

If G has treewidth ⩽ k then G has nonrepetitive coloring with 4k

colors

�



�
	Dujmović, Esperet, J., Walczak, Wood 2019

Planar graphs have nonrepetitive chromatic number ⩽ 768
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Application: Adjacency labelings

Each vertex receives a unique label (bitstring) s.t. one can decide

whether v and w are adjacent just based on their labels

�
�

�
�

Conjecture (Kannan, Naor, and Rudich 1988)

Can do labels with log2 n + o(log n) bits for n-vertex planar

graphs

Known upper bounds on label sizes:

▶ 4 log2 n (Kannan, Naor, and Rudich, 1988)

▶ 3 log2 n + o(log n) (Chung, 1990)

▶ 2 log2 n + o(log n) (Gavoille & Labourel, 2007)

▶ 4
3 log2 n + o(log n) (Bonamy, Gavoille, Pilipczuk, 2020)�

�
�
�

Dujmović, Esperet, Gavoille, J., Micek, Morin, Wood 2021
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Dujmović, Esperet, Gavoille, J., Micek, Morin, Wood 2021

Can do labels with log2 n + o(log n) bits for n-vertex planar

graphs



Application: Adjacency labelings

Each vertex receives a unique label (bitstring) s.t. one can decide

whether v and w are adjacent just based on their labels

�
�

�
�

Conjecture (Kannan, Naor, and Rudich 1988)

Can do labels with log2 n + o(log n) bits for n-vertex planar

graphs

Known upper bounds on label sizes:

▶ 4 log2 n (Kannan, Naor, and Rudich, 1988)

▶ 3 log2 n + o(log n) (Chung, 1990)

▶ 2 log2 n + o(log n) (Gavoille & Labourel, 2007)

▶ 4
3 log2 n + o(log n) (Bonamy, Gavoille, Pilipczuk, 2020)�

�
�
�
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Thank you!


