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3



Background



Background
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Computer Vision – In Theory

 Objective:
Provide Computer Systems with the 
Sense of Sight we Possess



Background
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Computer Vision – In Practice
 Recognize and localize objects, actions, etc. in visual data (images and videos)



Background
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Computer Vision – Classical Approach

 Idea: Engineer informative features + Use ML to discriminate between those features

dataset

ML Method
(SVM, RF, Boosting, etc.)

Feature extraction Machine Learning

PredictionInterest Points
(SIFT, SURF, kAS, etc.)
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 How to do that?
Deformable-Part Models (DPMs)
[Felzenszwalb et al., TPAMI’10]

Background
Computer Vision – Classical Approach



Background
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Learning-based Representations

Dataset

“Siamese cat”

Deep Neural Network

 Idea: Let the ML method figure out what features are important

            ( i.e. Representation Learning )



Training a Model
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Given:

 Classification Task with k classes.
 Training Data:  inputs (xi) and labels (yi)

Data Target (yi)

MODELxi yi Loss
Function (L)

^



Object Localization
[ … Reducing the Level of Required Annotation ]



Background: Object Detection
Given: an input image Xi

Do: predict a label ci ( out of a set of class labels ) & location ( bounding box )predict a label 

Required Data
– Xi 
– Yi = { ci, xi, yi, hi, wi }



Task of Interest: Object Localization
Given: an input image Xi and a prediction a label ci ( out of a set of class labels ).

Do: predict the location ( bounding box )pedict a label 

Required Data
– Xi 
– Yi = { ci }



Class Activation Mapping (CAM) [Zhou et al., 2016]
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Weakly-supervised Localization via CAM



Some Problems 
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Weakly-supervised Localization via CAM

Under-estimation

Over-estimation

Annotation (GT)
Estimation



Under-estimating  Object Region
– Drop the most discriminative regions
– Occlude parts of the input
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Related Work

[1] Singh et al., ICCV 17
[2] Choe et al., CVPR 19
[3] Zhang et al., CVPR 18
[4] Yang et al., WACV 20

Over-estimating Object Region
– Compute all possible CAMs and combine 
them via a pre-defined function.



MinMaxCAM
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𝐶𝐴𝑀=∑
𝑘=0

𝑘−1

𝑤𝑘
𝑐 𝐵(𝐼 )

Proposed Method



MinMaxCAM – test time
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Proposed Method
𝐶𝐴𝑀=∑

𝑘=0

𝑘−1

𝑤𝑘
𝑐 𝐵(𝐼 )
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MinMaxCAM

𝑓=𝐵(𝐼∗ 𝐻 )

𝑓=𝐵(𝐼∗ 𝐻 )

𝑓 𝑜=𝐵(𝐼 )

CommonRegion Regularization (CRR)

Full Region Regularization(FRR )

Over-estimation

Under-estimation

[Wang et al., BMVC 2021]



Training
→ Apply both loss functions per minibatch in an iterative manner
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MinMaxCAM [Wang et al., BMVC 2021]

Stage-I

Stage-II



Training
→ Apply both loss functions per minibatch in an iterative manner
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MinMaxCAM [Wang et al., BMVC 2021]

Stage-I

Stage-II



Evaluation
Datasets

– ILSVRC’12 | CUB-200-Birds | OpenImages Segmentation

Architectures
– VGG-16 | ResNet-50 | MobileNetV2
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Evaluation – Qualitative Results
Annotation (GT)
Estimation

Before After
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Evaluation – Qualitative Results
Annotation (GT)
Estimation
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Evaluation – Quantitative Results

*

*

*
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Ablation Study – Effect of the set size S

Evaluation – Quantitative Results
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Ablation Study – Effect of the hyperparameters ƛ

Evaluation – Quantitative Results
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Ablation Study – Effect of the hyperparameters ƛ

Evaluation – Quantitative Results

Before After
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Evaluation – Failure Cases

Annotation (GT)
Estimation



Take Home Message



Take Home Message

39

 MinMaxCAM
– Redistribute the activation mass

– Lightweight, Fast

– Relatively simple to train

– Limited to sigle-instance occurrence

 More details or results?
– Please see the paper:

MinMaxCAM: Improving object coverage for CAM-based Weakly Supervised Object Localization

Kaili Wang, José Oramas M., and Tinne Tuytelaars. BMVC 2021 

– Publicly available [ arxiv:2104.14375 ]



Thanks for your Attention



José Oramas
Assistant Professor
Internet Data Lab, University of Antwerp & imec
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- Email: Jose Oramas@UAntwerpen.be
- Twitter: @jaom7
- Mastodon: sigmoid.social/@jaom7

Want to discuss further?
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Research Interests
- Representation Learning & Computer Vision
- Explainable AI / Interpretable ML
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