

Weakly-supervised object localization via class activation mapping

José Oramas

Internet Data Lab (IDLab), University of Antwerp, imec.

Personal Context

Some details

Teaching

- Operating Systems (1500WETOPS)
- Distributed Systems (1500WETDIS)
- Artificial Neural Networks (2500WETANN)

Affiliations

- Internet Data Lab (IDLab)

Research Interests

- Representation Learning
- Computer Vision

ເກາຍເ

University of Antwerp

- Explainable AI / Interpretable ML

Research Lab Internet Data Lab (IDLab) – UAntwerp, imec

Research Team

First of all

Research is Team Sport

Kaili Wang

José Oramas

Tinne Tuytelaars

Computer Vision – In Theory

 Objective:
Provide Computer Systems with the Sense of Sight we Possess

Computer Vision – In Practice

Recognize and localize objects, actions, etc. in visual data (images and videos)

Computer Vision – Classical Approach

Idea: Engineer informative features + Use ML to discriminate between those features

Computer Vision – Classical Approach

• How to do that?

Deformable-Part Models (DPMs) [Felzenszwalb et al., TPAMI'10]

ເງຍອ

University of Antwerp

Learning-based Representations

Deep Neural Network

• Idea: Let the ML method figure out what features are important

(i.e. Representation Learning)

Training a Model

Given:

- Classification Task with k classes.
- Training Data: inputs (x_i) and labels (y_i)

Object Localization

[... Reducing the Level of Required Annotation]

Background: Object Detection

- **Given:** an input image X_i
- **Do:** predict a label c_i (out of a set of class labels) & location (bounding box)

Required Data
-
$$X_i$$

- $Y_i = \{ c_i, x_i, y_i, h_i, w_i \}$

Task of Interest: Object Localization

Given: an input image X_i and a prediction a label c_i (out of a set of class labels).

Do: predict the location (bounding box)

Weakly-supervised Localization via CAM

Class Activation Mapping (CAM) [Zhou et al., 2016]

Weakly-supervised Localization via CAM

Annotation (GT) Estimation

Some Problems

Under-estimation

Over-estimation

Related Work

Under-estimating Object Region

- Drop the most discriminative regions
- Occlude parts of the input

Singh et al., ICCV 17
Choe et al., CVPR 19
Zhang et al., CVPR 18
Yang et al., WACV 20

Over-estimating Object Region

- Compute all possible CAMs and combine them via a pre-defined function.

MinMaxCAM [Wang et al., BMVC 2021]

University of Antwer

MinMaxCAM [Wang et al., BMVC 2021]

Training

\rightarrow Apply both loss functions per minibatch in an iterative manner

MinMaxCAM [Wang et al., BMVC 2021]

Training

University of Antwerp nnec

\rightarrow Apply both loss functions per minibatch in an iterative manner

Evaluation

Datasets

- ILSVRC'12 | CUB-200-Birds | OpenImages Segmentation

Architectures

- VGG-16 | ResNet-50 | MobileNetV2

Before

After

Before

After

Under-estimation

Over-

eS

timation

University of Antwerp

Evaluation – Qualitative Results

Annotation (GT) Estimation

	Method	Backbone	ImageNet		CUB		OpenImages
			MaxBoxAcc (%)	MaxBoxAccV2 (%)	MaxBoxAcc (%)	MaxBoxAccV2 (%)	PxAP (%)
*	CAM	VGG16	61.1	60.0	71.1	63.7	58.1
	HaS	VGG16	0.7	0.6	5.2	0	-1.2
	ACoL	VGG16	-0.8	-2.6	1.2	-6.3	-3.4
	SPG	VGG16	0.5	-0.1	-7.4	-7.4	-2.2
	ADL	VGG16	-0.3	-0.2	4.6	2.6	0.2
	CutMix	VGG16	1.0	-0.6	0.8	-1.4	0.1
	I2C	VGG16	-	-	-2.7	-3	-1
	Ours	VGG16	3.5	2.2	12.8	6.5	1.9
*	CAM	ResNet50	64.2	63.7	73.2	63.0	58.0
	HaS	ResNet50	-1	-0.3	4.9	1.7	0.2
	ACoL	ResNet50	-2.5	-1.4	-0.5	3.5	-0.2
	SPG	ResNet50	-0.7	-0.4	-1.8	-2.6	-0.3
	ADL	ResNet50	0	0	0.3	-4.6	-3.7
	CutMix	ResNet50	-0.3	-0.4	-5.4	-0.2	-0.7
	I2C	ResNet50	-	-	0.3	1.0	2.9
	Ours	ResNet50	2.5	2.0	4.8	4.3	2.9
*	CAM	MobilenetV2	60.8	59.5	65.3	58.1	54.9
•.	I2C	MobilenetV2	-	-	1.9	1.5	3.3
werp	Ours	MobilenetV2	4.5	3.8	10.5	6.9	4.4 ³

Ablation Study – Effect of the set size S

Set size S	MaxBoxAcc(%)	MaxBoxAccV2(%)		
S=5	75.8	65.0		
S=4	74.7	64.6		
S=3	74.4	64.4		
S=2	73.9	63.9		
CAM	65.3	58.1		

Table 3: Effect of the set size S.

r

mec

University of Antwerp

$$L_{S2} = \lambda_1 CRR + \lambda_2 FRR$$

 $L_{S2} = \lambda_1 CRR + \lambda_2 FRR$

Before

After

University of Antwerp

Evaluation - Failure Cases

Type 1 failure

Annotation (GT) Estimation

Type 2 failure

Take Home Message

Take Home Message

MinMaxCAM

- Redistribute the activation mass
- Lightweight, Fast
- Relatively simple to train
- Limited to sigle-instance occurrence
- More details or results?
 - Please see the paper:

MinMaxCAM: Improving object coverage for CAM-based Weakly Supervised Object Localization

Kaili Wang, José Oramas M., and Tinne Tuytelaars. BMVC 2021

Publicly available [arxiv:2104.14375]

Thanks for your Attention

Want to discuss further?

José Oramas

Assistant Professor

Internet Data Lab, University of Antwerp & imec

Research Interests

- Representation Learning & Computer Vision
- Explainable AI / Interpretable ML

Contact details:

- Email: Jose Oramas@UAntwerpen.be
- Twitter: @jaom7
- Mastodon: sigmoid.social/@jaom7

Weakly-supervised object localization via class activation mapping

José Oramas

Internet Data Lab (IDLab), University of Antwerp, imec.