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The model

Characterized by

Undirected conflict graph G = (V ,E ) with n = |V |
Vector with back-off rates (ν1, . . . , νn), with νi ∈ R+

Evolves as

A vertex has two states: active/inactive

Active vertex becomes inactive after some time with mean 1
and starts a back-off period

Back-off period of vertex i has mean length 1/νi

Vertex becomes active at end of back-off period if none of its
neighbors are active, otherwise new back-off period starts
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The model

Feasible states and steady state

Let zi = 1 if vertex i is active and 0 otherwise

Set of feasible states:

Ω = {(z1, . . . , zn) ∈ {0, 1}n|zizj = 0 if (i , j) ∈ E (G )},

Probability π(z⃗) to be in state z⃗ = (z1, . . . , zn) ∈ Ω is

π(z⃗) =
1

Zn

n∏
i=1

νzii ,

where Zn =
∑

z⃗∈Ω
∏n

i=1 ν
zi
i
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The model

Example

Consider conflict graph G (red is active)

1 2 3 4
5

6789

10 11

Probability to be in the above state is

π(z⃗) =
1

Zn
ν1ν5ν8,

⇒ π(z⃗) is proportional to product of rates of active vertices
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The model

Throughput vector

Throughput of vertex i is fraction of time that vertex i is
active:

θi =
∑

z⃗∈Ω,zi=1

π(z⃗).

Set of achievable throughput vectors (Jiang and Walrand,
2010)

Γ =

{∑
z⃗∈Ω

ξ(z⃗)z⃗

∣∣∣∣∣∑
z⃗∈Ω

ξ(z⃗) = 1, ξ(z⃗) > 0 for z⃗ ∈ Ω

}
.

For any θ⃗ ∈ Γ there exists a unique vector of back-off rates
ν⃗(θ⃗) that achieves θ⃗ (van de Ven, Janssens, van Leeuwaarden
and Borst, 2011)
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The model

Throughput vector

Let Ni = {j |(i , j) ∈ E (G )} be neighbors of i

Let ZW with W ⊂ V (G ) be the normalizing constant of the
network induced by W

Throughput of vertex i can be expressed as

θi =
νiZV (G)\(Ni∪i)

Zn

for example:

θ8 = ν8Z{1,4,5,6}/Zn = ν8(1 + ν1)(1 + ν4 + ν5 + ν6)/Zn

Proof idea: find explicit expressions for Zn and ZV (G)\(Ni∪i)

Benny Van Houdt Back-off Rates for CSMA 7/21



The model

Questions

For which graphs G can we find an explicit expression for the
unique vector of back-off rates ν⃗(θ⃗)?

Can we compute these rates in a distributed manner?

How about general conflict graphs?
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Existing results

Fairness in line networks
(van de Ven, Janssens and van Leeuwaarden, 2009)

Line networks with interference range β ∈ {1, 2, . . . , n − 1}.
Example: n = 9, β = 2

1 2 3 4 5 6 7 8 9

When θ1 = . . . = θn = γ < 1/(β + 1),

νi (θ⃗) = γ
(1− γβ)hi−1

(1− γ(β + 1))hi
,

with hi = min(i + β, n)−max(i , β + 1) + 1.

For n = 9, β = 2: (h1, . . . , h9) = (1, 2, 3, 3, 3, 3, 3, 2, 1)

Benny Van Houdt Back-off Rates for CSMA 9/21



The good

Line networks: θ⃗ ∈ Γ

Example: n = 9, β = 2

1 2 3 4 5 6 7 8 9

Back-off rates for node 1, 2 and i = 3, . . . , 7 is

ν1(θ⃗) =
θ1

1− θ1 − θ2 − θ3

ν2(θ⃗) =
θ2(1− θ2 − θ3)

(1− θ1 − θ2 − θ3)(1− θ2 − θ3 − θ4)

νi (θ⃗) =

θi (1− θi−1 − θi )(1− θi − θi+1)

(1− θi−2 − θi−1 − θi )(1− θi−1 − θi − θi+1)(1− θi − θi+1 − θi+2)
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The good

Line networks: θ⃗ ∈ Γ

Line networks with interference range β ∈ {1, 2, . . . , n − 1}.
For θ⃗ ∈ Γ, we have

νi (θ⃗) = θi

min(i+β,n)−1∏
j=max(i ,β+1)

(1− θj−β+1 − . . .− θj)

min(i+β,n)∏
j=max(i ,β+1)

(1− θj−β − . . .− θj)

,

θ⃗ ∈ Γ if and only if

T =
n−β
max
i=1

(θi + . . .+ θi+β) < 1
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The good1

Tree networks (i.e., acyclic conflict graph G )

For θ⃗ ∈ Γ, we have

νi (θ⃗) =
θi (1− θi )

|Ni |−1∏
j∈Ni

(1− θi − θj)
,

θ⃗ ∈ Γ if and only if

T = max
(k,j)∈E

(θk + θj) < 1

Back-off rate of vertex i depends only on θi and the target
throughputs of neighbors in G

1This formula was presented earlier by Yun, Shin and Yi (2015, IEEE Trans.
Inf. Theory) as the Bethe approximation
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Chordal graphs

Definition

A graph G is chordal if and only if all cycles of length > 3
have a chord

A chord of a cycle C is an edge joining two nonconsecutive
vertices of C

chord1

2 3

4

56

Examples

chordal

1

2 3

4

56

not chordal

1

2

3

4

5
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Chordal graphs

Perfect elimination order (peo)

A peo is an ordering of V (G ) such that for v ∈ V (G ) we have
v and the neighbors of v that appear after v in the order form
a clique

Example:

1 2 3 4
5

6789

10 11

peo = 1, 9, 10, 11, 8, 2, 3, 4, 5, 7, 6

G is chordal if and only if it has a peo

peo can be found in O(|V (G )|+ |E (G )|) time
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Chordal graphs

Clique tree

A clique tree T = (KG , E) for G is a tree in which

KG corresponds to the maximal cliques of G
E is such that the subgraph of T induced by the maximal
cliques that contain v is a subtree of T for any v ∈ V

Example:

1 2 3 4
5

6789

10 11
K1

K2 K3

K4

K5

K6

K1 = {1, 2},K2 = {3, 4, 5, 6, 7},K3 = {2, 3, 7, 8},K4 = {7, 8, 10},K5 = {8, 9},K6 = {7, 8, 11}

G is chordal if and only if it has at least one clique tree
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Main result: chordal conflict graphs

Clique tree representation

Let G be chordal and T = (KG , E) is a clique tree of G :

νi (θ⃗) = θi

∏
(K ,K ′)∈E,i∈K∩K ′

(
1−

∑
s∈K∩K ′

θs

)
∏

K∈KG ,i∈K

(
1−

∑
s∈K

θs

) ,

θ⃗ ∈ Γ if and only if T = maxj∈KG

∑
s∈Kj

θs < 1

Back-off rate of vertex i depends only on θi and the target
throughputs of neighbors in G
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Algorithm for chordal conflict graphs

Peo algorithm

Input: A chordal conflict graph G
Output: Back-off rates ν1(θ⃗), . . . , νn(θ⃗)

1 Determine a perfect elimination ordering of G
2 for i = 1 to n do
3 Let α(i) be the node in position i in this order;
4 end
5 for i = 1 to n do
6 Let Mα(i) = Nα(i) ∩ {α(i + 1), . . . , α(n)};
7 end

8 να(n)(θ⃗) = θα(n)/(1− θα(n));

9 for i = n − 1 down to 1 do

10 να(i)(θ⃗) = θα(i)/(1− θα(i) −
∑

s∈Mα(i)
θs);

11 for j ∈ Mα(i) do

12 νj(θ⃗) = νj(θ⃗)
1−

∑
s∈Mα(i)

θs

1−θα(i)−
∑

s∈Mα(i)
θs
;

13 end

14 end
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Distributed algorithm for chordal conflict graphs

Local peo representation

Each vertex i sends θi and the list Ni ∪ {i} to j ∈ Ni

To set rate νi (θ⃗)

Construct the subgraph Gi of G induced by vertices Ni ∪ {i}
Run peo algorithm on Gi to determine νi (θ⃗)

Example

G2 G3 G10

1 2 3

78

2 3 4
5

678

8 7

10

⇒ ν2(θ⃗) =
θ2(1−θ2)

(1−θ2−θ3−θ7−θ8)(1−θ1−θ2)
, ν10(θ⃗) =

θ10
1−θ7−θ8−θ10

⇒ ν3(θ⃗) =
θ3(1−θ3−θ7)

(1−θ2−θ3−θ7−θ8)(1−θ3−θ4−θ5−θ6−θ7)
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Beyond chordal conflict graphs: the bad

Ring networks: back-off rate depends on all θ’s
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Figure: Back-off rate of node 3 as a function of θ1 in a ring network
with n = 4 nodes, where θ2 = θ3 = θ4 = 1/4.
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Distributed approximation for general conflict graphs

Local chordal subgraph approximation

Find a maximal chordal subgraph G̃i of Gi via MAXCHORD
algorithma with i as initial vertex

Set νi (θ⃗) by running peo algorithm on this subgraph G̃i
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Local chordal subgraph approximation

Bethe approximation

aDearing, Shier and Warner, 1988

Benny Van Houdt Back-off Rates for CSMA 20/21



Further reading

this talk

http://arxiv.org/abs/1602.08290

my work

http://win.ua.ac.be/~vanhoudt/
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