Explicit back-off rates for achieving target throughputs in CSMA/CA networks

Benny Van Houdt

*Dept. Mathematics and Computer Science University of Antwerp Antwerp, Belgium

December 2, 2022

Outline

- Model description
- Basic properties
- Questions
- Existing results
- The good
 - Line networks
 - Trees
 - Main result
- The bad
- Approximations (the ugly)

Characterized by

- Undirected conflict graph G = (V, E) with n = |V|
- Vector with back-off rates (ν_1, \ldots, ν_n) , with $\nu_i \in \mathbb{R}^+$

Evolves as

- A vertex has two states: active/inactive
- Active vertex becomes inactive after some time with mean 1 and starts a back-off period
- Back-off period of vertex i has mean length $1/\nu_i$
- Vertex becomes active at end of back-off period *if none of its neighbors* are active, otherwise new back-off period starts

Feasible states and steady state

- Let $z_i = 1$ if vertex *i* is active and 0 otherwise
- Set of feasible states:

$$\Omega = \{ (z_1, \dots, z_n) \in \{0, 1\}^n | z_i z_j = 0 \text{ if } (i, j) \in E(G) \},\$$

• Probability $\pi(\vec{z})$ to be in state $\vec{z} = (z_1, \ldots, z_n) \in \Omega$ is

$$\pi(\vec{z}) = \frac{1}{Z_n} \prod_{i=1}^n \nu_i^{z_i},$$

where $Z_n = \sum_{\vec{z} \in \Omega} \prod_{i=1}^n \nu_i^{z_i}$

Example

• Consider conflict graph G (red is active)

• Probability to be in the above state is

$$\pi(\vec{z})=\frac{1}{Z_n}\nu_1\nu_5\nu_8,$$

 $\Rightarrow \pi(\vec{z})$ is proportional to product of rates of active vertices

Throughput vector

• Throughput of vertex *i* is fraction of time that vertex *i* is active:

$$heta_i = \sum_{ec{z} \in \Omega, z_i = 1} \pi(ec{z}).$$

Set of achievable throughput vectors (Jiang and Walrand, 2010)

$$\Gamma = \left\{ \sum_{\vec{z} \in \Omega} \xi(\vec{z}) \vec{z} \middle| \sum_{\vec{z} \in \Omega} \xi(\vec{z}) = 1, \xi(\vec{z}) > 0 \text{ for } \vec{z} \in \Omega \right\}.$$

Throughput vector

- Let $\mathcal{N}_i = \{j | (i,j) \in E(G)\}$ be neighbors of i
- Let Z_W with W ⊂ V(G) be the normalizing constant of the network induced by W
- Throughput of vertex *i* can be expressed as

$$\theta_i = \frac{\nu_i Z_{V(G) \setminus (\mathcal{N}_i \cup i)}}{Z_n}$$

for example:

$$heta_8 =
u_8 Z_{\{1,4,5,6\}} / Z_n =
u_8 (1 +
u_1) (1 +
u_4 +
u_5 +
u_6) / Z_n$$

• Proof idea: find explicit expressions for Z_n and $Z_{V(G)\setminus(\mathcal{N}_i\cup i)}$

Questions

- For which graphs G can we find an explicit expression for the unique vector of back-off rates ν
 i(*θ*)?
- Can we compute these rates in a distributed manner?
- How about general conflict graphs?

Existing results

Fairness in line networks

(van de Ven, Janssens and van Leeuwaarden, 2009)

- Line networks with interference range $\beta \in \{1, 2, \dots, n-1\}$.
- Example: n = 9, $\beta = 2$

• When $heta_1=\ldots= heta_n=\gamma<1/(eta+1)$,

$$\nu_i(\vec{\theta}) = \gamma \frac{(1-\gamma\beta)^{h_i-1}}{(1-\gamma(\beta+1))^{h_i}},$$

with $h_i = \min(i + \beta, n) - \max(i, \beta + 1) + 1$. • For $n = 9, \beta = 2$: $(h_1, \dots, h_9) = (1, 2, 3, 3, 3, 3, 3, 2, 1)$

The good

Line networks: $\vec{\theta} \in \Gamma$

• Example: n = 9, $\beta = 2$

• Back-off rates for node 1,2 and $i = 3, \ldots, 7$ is

$$\nu_{1}(\vec{\theta}) = \frac{\theta_{1}}{1 - \theta_{1} - \theta_{2} - \theta_{3}}$$

$$\nu_{2}(\vec{\theta}) = \frac{\theta_{2}(1 - \theta_{2} - \theta_{3})}{(1 - \theta_{1} - \theta_{2} - \theta_{3})(1 - \theta_{2} - \theta_{3} - \theta_{4})}$$

$$\nu_{i}(\vec{\theta}) = \frac{\theta_{i}(1 - \theta_{i-1} - \theta_{i})(1 - \theta_{i} - \theta_{i+1})}{(1 - \theta_{i-2} - \theta_{i-1} - \theta_{i})(1 - \theta_{i-1} - \theta_{i} - \theta_{i+1})(1 - \theta_{i} - \theta_{i+1} - \theta_{i+2})}$$

The good

Line networks: $\vec{\theta} \in \Gamma$

Line networks with interference range β ∈ {1, 2, ..., n − 1}.
For θ ∈ Γ, we have

$$u_i(ec{ heta}) = heta_i \; rac{\prod\limits_{j=\mathsf{max}(i,eta+1)}^{\mathsf{min}(i+eta,n)-1} (1- heta_{j-eta+1}-\ldots- heta_j)}{\prod\limits_{j=\mathsf{max}(i,eta+1)} (1- heta_{j-eta}-\ldots- heta_j)},$$

• $\vec{\theta} \in \Gamma$ if and only if

$$T = \max_{i=1}^{n-\beta} (\theta_i + \ldots + \theta_{i+\beta}) < 1$$

The good¹

Tree networks (i.e., acyclic conflict graph G)

• For $\vec{\theta} \in \Gamma$, we have

$$u_i(ec{ heta}) = rac{ heta_i(1- heta_i)^{|\mathcal{N}_i|-1}}{\prod_{j\in\mathcal{N}_i}(1- heta_i- heta_j)},$$

• $\vec{\theta} \in \Gamma$ if and only if

$$T = \max_{(k,j)\in E} (heta_k + heta_j) < 1$$

 Back-off rate of vertex *i* depends only on θ_i and the target throughputs of neighbors in G

¹This formula was presented earlier by Yun, Shin and Yi (2015, IEEE Trans. ^{Universited} Inf. Theory) as the Bethe approximation

Chordal graphs

Definition

- A graph G is chordal if and only if all cycles of length > 3 have a *chord*
- A *chord* of a cycle *C* is an edge joining two nonconsecutive vertices of *C*

Chordal graphs

Perfect elimination order (peo)

- A peo is an ordering of V(G) such that for v ∈ V(G) we have v and the neighbors of v that appear after v in the order form a clique
- Example:

peo = 1, 9, 10, 11, 8, 2, 3, 4, 5, 7, 6

- G is chordal if and only if it has a peo
- peo can be found in O(|V(G)| + |E(G)|) time

Chordal graphs

Clique tree

- A clique tree $T = (\mathcal{K}_G, \mathcal{E})$ for G is a tree in which
 - \mathcal{K}_G corresponds to the maximal cliques of G
 - *E* is such that the subgraph of *T* induced by the maximal cliques that contain *v* is a subtree of *T* for any *v* ∈ *V*

 $\textit{K}_{1} = \{1,2\},\textit{K}_{2} = \{3,4,5,6,\textbf{7}\},\textit{K}_{3} = \{2,3,\textbf{7},8\},\textit{K}_{4} = \{\textbf{7},8,10\},\textit{K}_{5} = \{8,9\},\textit{K}_{6} = \{\textbf{7},8,11\}$

• G is chordal if and only if it has at least one clique tree

Main result: chordal conflict graphs

Clique tree representation

• Let G be chordal and $T = (\mathcal{K}_G, \mathcal{E})$ is a clique tree of G:

$$\nu_i(\vec{\theta}) = \theta_i \; \frac{\prod_{(K,K')\in\mathcal{E}, i\in K\cap K'} \left(1 - \sum_{s\in K\cap K'} \theta_s\right)}{\prod_{K\in\mathcal{K}_G, i\in K} \left(1 - \sum_{s\in K} \theta_s\right)},$$

- $\vec{ heta} \in \Gamma$ if and only if $T = \max_{j \in \mathcal{K}_G} \sum_{s \in \mathcal{K}_j} \theta_s < 1$
- Back-off rate of vertex *i* depends only on θ_i and the target throughputs of neighbors in G

Algorithm for chordal conflict graphs

Peo algorithm

Input: A chordal conflict graph G **Output:** Back-off rates $\nu_1(\vec{\theta}), \ldots, \nu_n(\vec{\theta})$ 1 Determine a perfect elimination ordering of G 2 for i = 1 to n do 3 Let $\alpha(i)$ be the node in position *i* in this order; 4 end 5 for i = 1 to n do 6 Let $\mathcal{M}_{\alpha(i)} = \mathcal{N}_{\alpha(i)} \cap \{\alpha(i+1), \ldots, \alpha(n)\};$ 7 end 8 $\nu_{\alpha(n)}(\vec{\theta}) = \theta_{\alpha(n)}/(1-\theta_{\alpha(n)});$ 9 for i = n - 1 down to 1 do $\nu_{\alpha(i)}(\vec{\theta}) = \theta_{\alpha(i)} / (1 - \theta_{\alpha(i)} - \sum_{s \in \mathcal{M}_{\alpha(i)}} \theta_s);$ 10 for $j \in \mathcal{M}_{\alpha(i)}$ do 11 $\nu_{j}(\vec{\theta}) = \nu_{j}(\vec{\theta}) \frac{1 - \sum_{s \in \mathcal{M}_{\alpha(i)}} \theta_{s}}{1 - \theta_{\alpha(i)} - \sum_{s \in \mathcal{M}_{\alpha(i)}} \theta_{s}};$ 12 13 end 14 end

Distributed algorithm for chordal conflict graphs

Local peo representation

- Each vertex *i* sends θ_i and the list $\mathcal{N}_i \cup \{i\}$ to $j \in \mathcal{N}_i$
- To set rate $\nu_i(\vec{\theta})$
 - Construct the subgraph G_i of G induced by vertices $\mathcal{N}_i \cup \{i\}$
 - Run peo algorithm on G_i to determine $\nu_i(\vec{\theta})$

Example

 $\Rightarrow \nu_{3}(\vec{\theta}) = \frac{\theta_{3}(1-\theta_{2}-\theta_{3}-\theta_{7})}{(1-\theta_{2}-\theta_{3}-\theta_{7}-\theta_{8})(1-\theta_{3}-\theta_{4}-\theta_{5}-\theta_{6}-\theta_{7})}$

Beyond chordal conflict graphs: the bad

Ring networks: back-off rate depends on all θ 's

Figure: Back-off rate of node 3 as a function of θ_1 in a ring network with n = 4 nodes, where $\theta_2 = \theta_3 = \theta_4 = 1/4$.

Distributed approximation for general conflict graphs

Local chordal subgraph approximation

- Find a maximal chordal subgraph \tilde{G}_i of G_i via MAXCHORD algorithm^a with *i* as initial vertex
- Set $\nu_i(\vec{\theta})$ by running peo algorithm on this subgraph \tilde{G}_i

Further reading

this talk

• http://arxiv.org/abs/1602.08290

my work

• http://win.ua.ac.be/~vanhoudt/

- 4 同 ト 4 ヨ ト 4 ヨ ト