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String-to-String Transductions
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f : �ú Òæ �ú

Append a # abbab ‘æ abbab#
Delete all b abbab ‘æ aa
Squeeze all white space sequences Ø 2 friday 16 ‘æ friday 16
Add a parity bit 0100101 ‘æ 10100101
Mirror the input word antwerp ‘æ prewtna
Copy the input word yes ‘æ yesyes
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Transductions are defined by
Transducers
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Transducers: Automata with output

fdel :

b:Á b:Áa:a

a:a

aabaa ‘æ aaaa
aaba ‘æ undefined

dom(fdel) = ‘even number of a’
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Parity bit 01101 ‘æ 101101, 01111 ‘æ 001111

qe

qo

0:0

0:0

1:11:1

q0

0:00

0:10

1:11

1:01

6 of 22



Parity bit 01101 ‘æ 101101, 01111 ‘æ 001111

qe

qo

0:0

0:0

1:11:1q0

0:00

0:10

1:11

1:01

6 of 22



Parity bit 01101 ‘æ 101101, 01111 ‘æ 001111

qe

qo

0:0

0:0

1:11:1q0

0:00

0:10

1:11

1:01

6 of 22



Non-determinism and relations
In general, transducers define binary relations in �ú ◊ �ú

‡:Á

‡:‡

defines {(u, v) | v is a subword of u}
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Formal Definition
Definition
A (finite state) transducer is a tuple T = (�, Q, I, F, �) where:
I � is a finite alphabet
I Q is a finite set of states
I I ™ Q are the initial states and F ™ Q are the final states
I � ™ Q ◊ � ◊ �ú ◊ Q is the transition relation.

Semantics
A run is a sequence of transitions

r = q0
‡1:v1≠≠≠æ q1 . . . qn≠1

‡n:vn≠≠≠æ qn ‡i œ �

Its input is in(r) = ‡1 . . . ‡n and its output out(r) = v1 . . . vn.
The (rational) relation defined by T is:

JT K = {(in(r), out(r)) | r is an accepting run}
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Application: Natural Language
Processing
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Natural Language Processing
Table of nouns and their plural forms

Noun singular Noun plural
cat cats
dog dogs
cow cows
fox foxes
bus buses
quiz quizzes
goose geese
spy spies
city cities
· · · · · ·

I Ine�cient representation
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Natural Language Processing
Lexicon + spelling rules: Transducer for plural forms

11 of 22



Properties of Transducers
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Closure Properties
I Union

3

I Intersection
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Closure Properties
I Union 3

I Intersection
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Closure Properties: Intersection
1. show that {(anbm, an) | n, m Ø 0} is rational.

2. show that {(anbm, am) | n, m Ø 0} is rational.

3. are rational relations closed under intersection ? why ?
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Closure Properties
I Union 3

I Intersection 7

I Complement

7

Proof via De-Morgan’s Law of sets : A fl B = A fi B

I Composition :
R2 ¶ R1 = {(u, w) | ÷(u, v) œ R1, (v, w) œ R2}. 3

15 of 22



Closure Properties
I Union 3

I Intersection 7

I Complement 7

Proof via De-Morgan’s Law of sets : A fl B = A fi B

I Composition :
R2 ¶ R1 = {(u, w) | ÷(u, v) œ R1, (v, w) œ R2}.

3

15 of 22



Closure Properties
I Union 3

I Intersection 7

I Complement 7

Proof via De-Morgan’s Law of sets : A fl B = A fi B

I Composition :
R2 ¶ R1 = {(u, w) | ÷(u, v) œ R1, (v, w) œ R2}.

3

15 of 22



Closure Properties
I Union 3

I Intersection 7

I Complement 7

Proof via De-Morgan’s Law of sets : A fl B = A fi B

I Composition :
R2 ¶ R1 = {(u, w) | ÷(u, v) œ R1, (v, w) œ R2}. 3

15 of 22



Transducer vs Automata

T : a:Á
a:a

a:Á
a:a

I Consider r1, r2 two runs on a3. We have
(in(r1), out(r1)) = (in(r2), out(r2)) but di�erent in-out
words:

(a, a)(a, a)(a, Á) ”= (a, Á)(a, a)(a, a)
I Transducers are asynchronous
I Make most transducer problems conceptually di�cult (and

even computationally).
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Determinizability: Example
= white space

0 12

a:a :Á:

a:a

:Á
:Á

aa a ‘æ aa a

Is non-determinism needed ? No.

3 4

a:a :Á:Á

a: a
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Can we always get an equivalent deterministic FT?

I not in general: input-deterministic transducers are less
expressive than functional ones

q0 q1q2 q3q4
a:b

a:b
b:ba:c

a:c
c:c

Semantics

JT K :
I

anb ‘æ bn+1

anc ‘æ cn+1 functional but not determinizable
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Di�erent classes of transductions
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Class Membership Problems
Functionality
Def Given a transducer T , is JT K a function?

Thm (Gurari, Ibarra 83, Carton, Beal, Prieur,Sakarovitch 03).
Functionality is decidable in PTime.

Determinizability
Def Given a transducer T , does there exist an
input-deterministic transducer T Õ such that JT K = JT ÕK?

Thm (Cho�rut 77, Weber, Klemm 95).
Determinizability is decidable in PTime.

20 of 22



Class Membership Problems
Functionality
Def Given a transducer T , is JT K a function?

Thm (Gurari, Ibarra 83, Carton, Beal, Prieur,Sakarovitch 03).
Functionality is decidable in PTime.

Determinizability
Def Given a transducer T , does there exist an
input-deterministic transducer T Õ such that JT K = JT ÕK?

Thm (Cho�rut 77, Weber, Klemm 95).
Determinizability is decidable in PTime.

20 of 22



Class Membership Problems
Functionality
Def Given a transducer T , is JT K a function?

Thm (Gurari, Ibarra 83, Carton, Beal, Prieur,Sakarovitch 03).
Functionality is decidable in PTime.

Determinizability
Def Given a transducer T , does there exist an
input-deterministic transducer T Õ such that JT K = JT ÕK?

Thm (Cho�rut 77, Weber, Klemm 95).
Determinizability is decidable in PTime.

20 of 22



Class Membership Problems
Functionality
Def Given a transducer T , is JT K a function?

Thm (Gurari, Ibarra 83, Carton, Beal, Prieur,Sakarovitch 03).
Functionality is decidable in PTime.

Determinizability
Def Given a transducer T , does there exist an
input-deterministic transducer T Õ such that JT K = JT ÕK?

Thm (Cho�rut 77, Weber, Klemm 95).
Determinizability is decidable in PTime.

20 of 22



Another Fundamental Problem: Equivalence
Def Given two transducers T1, T2, does JT1K = JT2K hold?

Case of functional transducers
I Equivalence reduces to functionality:

1. test whether dom(T1) = dom(T2)
2. test whether T1 ‡ T2 is functional.

General case
I Undecidable (Gri�th 68),
I even if one alphabet is unary (Ibarra 78)
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Summary – Transducers
Expressiveness:

input-deterministic functional non-deterministic

PTimePTime

fdel fparity Rsubword< <

Equivalence: (dom(T1) = dom(T2) is known)

input-deterministic functional non-deterministic

PTime PTime undec
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