Transducers and Their Decision Problems

Sarah Winter
Université libre de Bruxelles, Belgium

16 December, 2022
No free lunch seminar @ UAntwerp

String-to-String Transductions

$$
f: \Sigma^{*} \hookrightarrow \Sigma^{*}
$$

$$
f: \Sigma^{*} \hookrightarrow \Sigma^{*}
$$

Append a \#
$a b b a b \mapsto a b b a b \#$

$$
f: \Sigma^{*} \hookrightarrow \Sigma^{*}
$$

Append a \#
Delete all b

$$
f: \Sigma^{*} \hookrightarrow \Sigma^{*}
$$

Append a \#
Delete all b
$a b b a b \mapsto a b b a b \#$
Squeeze all white space sequences $\geq 2 \quad$ fridayш $16 \mapsto$ friday 16

$$
f: \Sigma^{*} \hookrightarrow \Sigma^{*}
$$

Append a \#
Delete all b
Squeeze all white space sequences ≥ 2
Add a parity bit
$a b b a b \mapsto a b b a b \#$
$a b b a b \mapsto a a$
friday $_16 \mapsto$ fridayゅ16
$0100101 \mapsto 10100101$

$$
f: \Sigma^{*} \hookrightarrow \Sigma^{*}
$$

Append a \#
Delete all b
Squeeze all white space sequences ≥ 2
Add a parity bit
Mirror the input word
$a b b a b \mapsto a b b a b \#$
$a b b a b \mapsto a a$
fridayь. $16 \mapsto$ fridayь16 $0100101 \mapsto 10100101$
antwerp \mapsto prewtna

$$
f: \Sigma^{*} \hookrightarrow \Sigma^{*}
$$

Append a \#
Delete all b
Squeeze all white space sequences ≥ 2
Add a parity bit
Mirror the input word
Copy the input word
$a b b a b \mapsto a b b a b \#$
$a b b a b \mapsto a a$
fridayゅ.16 \mapsto fridayゅ16 $0100101 \mapsto 10100101$
antwerp \mapsto prewtna
yes \mapsto yesyes

Transductions are defined by Transducers

Transducers: Automata with output

Transducers: Automata with output

aabaa \mapsto aaaa

Transducers: Automata with output

$$
\begin{aligned}
a a b a a & \mapsto \text { aaaa } \\
a a b a & \mapsto \text { undefined }
\end{aligned}
$$

Transducers: Automata with output

$$
\begin{aligned}
a a b a a & \mapsto a a a a \\
a a b a & \mapsto \text { undefined } \\
\operatorname{dom}\left(f_{\text {del }}\right) & =\text { 'even number of } a
\end{aligned}
$$

Parity bit

Parity bit

Parity bit

Non-determinism and relations

In general, transducers define binary relations in $\Sigma^{*} \times \Sigma^{*}$

$$
\text { defines }\{(u, v) \mid v \text { is a subword of } u\}
$$

Formal Definition

Definition
A (finite state) transducer is a tuple $T=(\Sigma, Q, I, F, \Delta)$ where:

- Σ is a finite alphabet
- Q is a finite set of states
- $I \subseteq Q$ are the initial states and $F \subseteq Q$ are the final states
- $\Delta \subseteq Q \times \Sigma \times \Sigma^{*} \times Q$ is the transition relation.

Formal Definition

Definition

A (finite state) transducer is a tuple $T=(\Sigma, Q, I, F, \Delta)$ where:

- Σ is a finite alphabet
- Q is a finite set of states
- $I \subseteq Q$ are the initial states and $F \subseteq Q$ are the final states
- $\Delta \subseteq Q \times \Sigma \times \Sigma^{*} \times Q$ is the transition relation.

Semantics

A run is a sequence of transitions

$$
r=q_{0} \xrightarrow{\sigma_{1}: v_{1}} q_{1} \ldots q_{n-1} \xrightarrow{\sigma_{n}: v_{n}} q_{n} \quad \sigma_{i} \in \Sigma
$$

Its input is $\operatorname{in}(r)=\sigma_{1} \ldots \sigma_{n}$ and its output $\operatorname{out}(r)=v_{1} \ldots v_{n}$. The (rational) relation defined by T is:

$$
\llbracket T \rrbracket=\{(\operatorname{in}(r), \text { out }(r)) \mid r \text { is an accepting run }\}
$$

Application: Natural Language
Processing

Natural Language Processing

Table of nouns and their plural forms

Noun singular	Noun plural
cat	cats
dog	dogs
cow	cows
fox	foxes
bus	buses
quiz	quizzes
goose	geese
spy	spies
city	cities
\ldots	\ldots

Natural Language Processing

Table of nouns and their plural forms

Noun singular	Noun plural
cat	cats
dog	dogs
cow	cows
fox	foxes
bus	buses
quiz	quizzes
goose	geese
spy	spies
city	cities
\ldots	\ldots

- Inefficient representation

Natural Language Processing
Lexicon + spelling rules: Transducer for plural forms

$$
\rightarrow, \xrightarrow{g: g}, \xrightarrow{0: e} \cdot \xrightarrow{0: e}, \xrightarrow{s: s}, \xrightarrow{e \cdot e}
$$

Properties of Transducers

Closure Properties

- Union

Closure Properties

- Union $\sqrt{ }$
- Intersection

Closure Properties: Intersection

1. show that $\left\{\left(a^{n} b^{m}, a^{n}\right) \mid n, m>0\right\}$ is rational.

Closure Properties: Intersection

1. show that $\left\{\left(a^{n} b^{m}, a^{n}\right) \mid n, m>0\right\}$ is rational.

2. show that $\left\{\left(a^{n} b^{m}, a^{m}\right) \mid n, m \geq 0\right\}$ is rational.

Closure Properties: Intersection

1. show that $\left\{\left(a^{n} b^{m}, a^{n}\right) \mid n, m>0\right\}$ is rational.

2. show that $\left\{\left(a^{n} b^{m}, a^{m}\right) \mid n, m>0\right\}$ is rational.

3. are rational relations closed under intersection ? why ?

$$
n:=\left\{\left(a^{n} b^{m}, a^{n}\right) \mid n=m>0\right\}
$$

Closure Properties

- Union $\sqrt{ }$
- Intersection \boldsymbol{X}
- Complement

Closure Properties

- Union $\sqrt{ }$
- Intersection \boldsymbol{X}
- Complement \boldsymbol{X}

Proof via De-Morgan's Law of sets : $\overline{\overline{A \cap B}}=\overline{\bar{A} \cup \bar{B}}$

Closure Properties

- Union $\sqrt{ }$
- Intersection \boldsymbol{X}
- Complement \boldsymbol{X} Proof via De-Morgan's Law of sets : $\overline{\overline{A \cap B}}=\overline{\bar{A} \cup \bar{B}}$
- Composition : $R_{2} \circ R_{1}=\left\{(u, w) \mid \exists(u, v) \in R_{1},(v, w) \in R_{2}\right\}$.

Closure Properties

- Union $\sqrt{ }$
- Intersection \boldsymbol{X}
- Complement \boldsymbol{X} Proof via De-Morgan's Law of sets : $\overline{\overline{A \cap B}}=\overline{\bar{A} \cup \bar{B}}$
- Composition :
$R_{2} \circ R_{1}=\left\{(u, w) \mid \exists(u, v) \in R_{1},(v, w) \in R_{2}\right\} . \checkmark$

Transducer vs Automata

Transducer vs Automata

- Consider r_{1}, r_{2} two runs on a^{3}. We have $\left(\operatorname{in}\left(r_{1}\right)\right.$,out $\left.\left(r_{1}\right)\right)=\left(\operatorname{in}\left(r_{2}\right)\right.$, out $\left.\left(r_{2}\right)\right)$ but different in-out words:

$$
(a, a)(a, a)(a, \varepsilon) \neq(a, \varepsilon)(a, a)(a, a)
$$

Transducer vs Automata

- Consider r_{1}, r_{2} two runs on a^{3}. We have $\left(\operatorname{in}\left(r_{1}\right)\right.$,out $\left.\left(r_{1}\right)\right)=\left(\operatorname{in}\left(r_{2}\right)\right.$, out $\left.\left(r_{2}\right)\right)$ but different in-out words:

$$
(a, a)(a, a)(a, \varepsilon) \neq(a, \varepsilon)(a, a)(a, a)
$$

- Transducers are asynchronous
- Make most transducer problems conceptually difficult (and even computationally).

Determinizability: Example

$$
\sqcup=\text { white space }
$$

Determinizability: Example

$$
\bullet=\text { white space }
$$

$$
\sqcup a a_{\llcorner\sim} a_{\llcorner } \quad \mapsto \quad \sqcup a a_{\Perp} a
$$

Determinizability: Example

$$
\llcorner=\text { white space }
$$

$$
\leftarrow a a_{\llcorner-} a_{\llcorner } \quad \mapsto \quad\left\llcorner a a_{\Perp} a\right.
$$

Is non-determinism needed ?

Determinizability: Example

$$
\sqcup=\text { white space }
$$

$$
\leftarrow a a_{\llcorner-} a_{\llcorner } \quad \mapsto \quad\left\llcorner a a_{\Perp} a\right.
$$

Is non-determinism needed ? No.

Can we always get an equivalent deterministic FT?

Can we always get an equivalent deterministic FT?

- not in general: input-deterministic transducers are less expressive than functional ones

Can we always get an equivalent deterministic FT?

- not in general: input-deterministic transducers are less expressive than functional ones

Semantics

$$
\llbracket T \rrbracket:\left\{\begin{array}{l}
a^{n} b \mapsto b^{n+1} \\
a^{n} c \mapsto c^{n+1}
\end{array}\right.
$$

functional but not determinizable

Different classes of transductions

Class Membership Problems

Functionality
Def Given a transducer T, is $\llbracket T \rrbracket$ a function?

Class Membership Problems

Functionality
Def Given a transducer T, is $\llbracket T \rrbracket$ a function?
Thm (Gurari, Ibarra 83, Carton, Beal, Prieur,Sakarovitch 03). Functionality is decidable in PTime.

Class Membership Problems

Functionality
Def Given a transducer T, is $\llbracket T \rrbracket$ a function?
Thm (Gurari, Ibarra 83, Carton, Beal, Prieur,Sakarovitch 03). Functionality is decidable in PTime.

Determinizability
Def Given a transducer T, does there exist an input-deterministic transducer T^{\prime} such that $\llbracket T \rrbracket=\llbracket T^{\prime} \rrbracket$?

Class Membership Problems

Functionality
Def Given a transducer T, is $\llbracket T \rrbracket$ a function?
Thm (Gurari, Ibarra 83, Carton, Beal, Prieur,Sakarovitch 03). Functionality is decidable in PTime.

Determinizability
Def Given a transducer T, does there exist an input-deterministic transducer T^{\prime} such that $\llbracket T \rrbracket=\llbracket T^{\prime} \rrbracket$?

Thm (Choffrut 77, Weber, Klemm 95).
Determinizability is decidable in PTime.

Another Fundamental Problem: Equivalence

Def Given two transducers T_{1}, T_{2}, does $\llbracket T_{1} \rrbracket=\llbracket T_{2} \rrbracket$ hold?

Another Fundamental Problem: Equivalence

Def Given two transducers T_{1}, T_{2}, does $\llbracket T_{1} \rrbracket=\llbracket T_{2} \rrbracket$ hold?

Case of functional transducers

- Equivalence reduces to functionality:

1. test whether $\operatorname{dom}\left(T_{1}\right)=\operatorname{dom}\left(T_{2}\right) \quad$ PSPACE
2. test whether $T_{1} \uplus T_{2}$ is functional. PTIME

Another Fundamental Problem: Equivalence

Def Given two transducers T_{1}, T_{2}, does $\llbracket T_{1} \rrbracket=\llbracket T_{2} \rrbracket$ hold?

Case of functional transducers

- Equivalence reduces to functionality:

1. test whether $\operatorname{dom}\left(T_{1}\right)=\operatorname{dom}\left(T_{2}\right)$
2. test whether $T_{1} \uplus T_{2}$ is functional.

General case

- Undecidable (Griffith 68),
- even if one alphabet is unary (Ibarra 78)

Summary - Transducers

Expressiveness:

Summary - Transducers

Expressiveness:

Equivalence: $\left(\operatorname{dom}\left(T_{1}\right)=\operatorname{dom}\left(T_{2}\right)\right.$ is known $)$

input-deterministic	functional	non-deterministic
PTime	PTime	undec

