Transducers and Their Decision Problems

Sarah Winter

Université libre de Bruxelles, Belgium

16 December, 2022 No free lunch seminar @ UAntwerp

String-to-String Transductions

 $f: \Sigma^* \hookrightarrow \Sigma^*$

 $f: \Sigma^* \hookrightarrow \Sigma^*$

Append a #

 $abbab \mapsto abbab \#$

 $f: \Sigma^* \hookrightarrow \Sigma^*$

Append a #Delete all b $abbab \mapsto abbab \#$ $abbab \mapsto aa$

 $f: \Sigma^* \hookrightarrow \Sigma^*$

Append a # $abbab \mapsto abbab#$ Delete all b $abbab \mapsto aa$ Squeeze all white space sequences ≥ 2 $friday_16 \mapsto friday_16$

 $f: \Sigma^* \hookrightarrow \Sigma^*$

Append a #Delete all bSqueeze all white space sequences > 2 friday_16 \mapsto friday_16 Add a parity bit

 $abbab \mapsto abbab \#$ $abbab \mapsto aa$ $0100101 \mapsto 10100101$

 $f: \Sigma^* \hookrightarrow \Sigma^*$

Append a #Delete all bSqueeze all white space sequences > 2 $friday_{16} \mapsto friday_{16}$ Add a parity bit Mirror the input word

 $abbab \mapsto abbab \#$ $abbab \mapsto aa$ $0100101 \mapsto 10100101$ $antwerp \mapsto prewtna$

 $f: \Sigma^* \hookrightarrow \Sigma^*$

Append a #Delete all bSqueeze all white space sequences ≥ 2 friday_16 \mapsto friday_16 Add a parity bit Mirror the input word Copy the input word

 $abbab \mapsto abbab \#$ $abbab \mapsto aa$ $0100101 \mapsto 10100101$ $antwerp \mapsto prewtna$ $yes \mapsto yesyes$

Transductions are defined by Transducers

$aabaa \mapsto aaaa$

Parity bit

$01101\mapsto \boldsymbol{1}01101, 01111\mapsto \boldsymbol{0}011111$

Parity bit

$01101\mapsto \boldsymbol{1}01101, 01111\mapsto \boldsymbol{0}011111$

Parity bit

Non-determinism and relations

In general, transducers define binary relations in $\Sigma^* \times \Sigma^*$

defines $\{(u, v) \mid v \text{ is a subword of } u\}$

Formal Definition

Definition

A (finite state) transducer is a tuple $T = (\Sigma, Q, I, F, \Delta)$ where:

- \blacktriangleright Σ is a finite alphabet
- \blacktriangleright Q is a finite set of states
- $\blacktriangleright \ I \subseteq Q$ are the initial states and $F \subseteq Q$ are the final states
- $\Delta \subseteq Q \times \Sigma \times \Sigma^* \times Q$ is the transition relation.

Formal Definition

Definition

A (finite state) transducer is a tuple $T = (\Sigma, Q, I, F, \Delta)$ where:

- \blacktriangleright Σ is a finite alphabet
- \blacktriangleright Q is a finite set of states
- ▶ $I \subseteq Q$ are the initial states and $F \subseteq Q$ are the final states
- $\Delta \subseteq Q \times \Sigma \times \Sigma^* \times Q$ is the transition relation.

Semantics

A run is a sequence of transitions

$$r = q_0 \xrightarrow{\sigma_1: v_1} q_1 \dots q_{n-1} \xrightarrow{\sigma_n: v_n} q_n \qquad \sigma_i \in \Sigma$$

Its input is $in(r) = \sigma_1 \dots \sigma_n$ and its output $out(r) = v_1 \dots v_n$. The (rational) relation defined by T is:

 $[\![T]\!] = \{(in(r), \underbrace{out}(r)) \mid r \text{ is an accepting run}\}$

Application: Natural Language Processing

Natural Language Processing

Table of nouns and their plural forms

Noun singular	Noun plural
cat	cats
\log	dogs
cow	cows
fox	foxes
bus	buses
quiz	quizzes
goose	geese
$_{\mathrm{spy}}$	spies
city	cities

Natural Language Processing

Table of nouns and their plural forms

Noun singular	Noun plural
cat	cats
\log	dogs
COW	cows
fox	foxes
bus	buses
quiz	quizzes
goose	geese
spy	spies
city	cities

Natural Language Processing

Lexicon + spelling rules: Transducer for plural forms

Properties of Transducers

▶ Union

\blacktriangleright Union \checkmark

▶ Intersection

Closure Properties: Intersection

1. show that $\{(a^n b^m, a^n) \mid n, m \ge 0\}$ is rational.

Closure Properties: Intersection

1. show that $\{(a^n b^m, a^n) \mid n, m \ge 0\}$ is rational.

2. show that $\{(a^n b^m, a^m) \mid n, m \ge 0\}$ is rational.

Closure Properties: Intersection

1. show that $\{(a^n b^m, a^n) \mid n, m \ge 0\}$ is rational.

2. show that $\{(a^n b^m, a^m) \mid n, m \ge 0\}$ is rational.

3. are rational relations closed under intersection ? why ?

$$\bigcap := \left\{ \left(a^{n} l^{m}, a^{n} \right) \mid n = m > 0 \right\}$$

- \blacktriangleright Union \checkmark
- \blacktriangleright Intersection X
- ▶ Complement

- \blacktriangleright Union \checkmark
- \blacktriangleright Intersection X
- \blacktriangleright Complement $\pmb{\mathsf{X}}$

Proof via De-Morgan's Law of sets : $\overline{\overline{A \cap B}} = \overline{\overline{A \cup \overline{B}}}$

- \blacktriangleright Union \checkmark
- \blacktriangleright Intersection X
- ► Complement X Proof via De-Morgan's Law of sets : $\overline{\overline{A \cap B}} = \overline{\overline{A} \cup \overline{B}}$
- Composition : $R_2 \circ R_1 = \{(u, w) \mid \exists (u, v) \in R_1, (v, w) \in R_2\}.$

- \blacktriangleright Union \checkmark
- \blacktriangleright Intersection X
- ► Complement XProof via De-Morgan's Law of sets : $\overline{\overline{A \cap B}} = \overline{\overline{A \cup B}}$
- Composition : $R_2 \circ R_1 = \{(u, w) \mid \exists (u, v) \in R_1, (v, w) \in R_2\}.$

Transducer vs Automata

Transducer vs Automata

Consider r_1, r_2 two runs on a^3 . We have $(in(r_1), out(r_1)) = (in(r_2), out(r_2))$ but different in-out words:

 $(a, \mathbf{a})(a, \mathbf{a})(a, \varepsilon) \neq (a, \varepsilon)(a, \mathbf{a})(a, \mathbf{a})$

Transducer vs Automata

Consider r_1, r_2 two runs on a^3 . We have $(in(r_1), out(r_1)) = (in(r_2), out(r_2))$ but different in-out words:

$$(a, \mathbf{a})(a, \mathbf{a})(a, \varepsilon) \neq (a, \varepsilon)(a, \mathbf{a})(a, \mathbf{a})$$

- ▶ Transducers are *asynchronous*
- Make most transducer problems conceptually difficult (and even computationally).

\Box = white space

\Box = white space

$\square aa \square a \square b \square aa \square a$

\Box = white space

$\square aa \square a \square \mapsto \square aa \square a$

Is non-determinism needed ?

\Box = white space

 $\square aa \square a \square \mapsto \square aa \square a$

Is non-determinism needed ? No.

Can we always get an equivalent deterministic FT?

Can we always get an equivalent deterministic FT?

not in general: input-deterministic transducers are less expressive than functional ones Can we always get an equivalent deterministic FT?

not in general: input-deterministic transducers are less expressive than functional ones

Semantics

$$\llbracket T \rrbracket : \left\{ \begin{array}{l} a^n b \mapsto b^{n+1} \\ a^n c \mapsto c^{n+1} \end{array} \right.$$

functional but not determinizable

Different classes of transductions

Functionality

Def Given a transducer T, is $\llbracket T \rrbracket$ a function?

Functionality

Def Given a transducer T, is $\llbracket T \rrbracket$ a function?

Thm (Gurari, Ibarra 83, Carton, Beal, Prieur, Sakarovitch 03). Functionality is decidable in PTIME.

Functionality **Def** Given a transducer T, is $\llbracket T \rrbracket$ a function?

Thm (Gurari, Ibarra 83, Carton, Beal, Prieur, Sakarovitch 03). Functionality is decidable in PTIME.

Determinizability

Def Given a transducer T, does there exist an input-deterministic transducer T' such that [T] = [T']?

Functionality **Def** Given a transducer T, is [T] a function?

Thm (Gurari, Ibarra 83, Carton, Beal, Prieur, Sakarovitch 03). Functionality is decidable in PTIME.

Determinizability

Def Given a transducer T, does there exist an input-deterministic transducer T' such that [T] = [T']?

Thm (Choffrut 77, Weber, Klemm 95). Determinizability is decidable in PTIME.

Another Fundamental Problem: Equivalence

Def Given two transducers T_1, T_2 , does $\llbracket T_1 \rrbracket = \llbracket T_2 \rrbracket$ hold?

Another Fundamental Problem: Equivalence

Def Given two transducers T_1, T_2 , does $\llbracket T_1 \rrbracket = \llbracket T_2 \rrbracket$ hold?

Case of functional transducers

- ▶ Equivalence reduces to functionality:
 - **1.** test whether $dom(T_1) = dom(T_2)$
 - **2.** test whether $T_1 \uplus T_2$ is functional.

PSPACE PTIME

Another Fundamental Problem: Equivalence

Def Given two transducers T_1, T_2 , does $\llbracket T_1 \rrbracket = \llbracket T_2 \rrbracket$ hold?

Case of functional transducers

- Equivalence reduces to functionality:
 - **1.** test whether $dom(T_1) = dom(T_2)$
 - **2.** test whether $T_1 \uplus T_2$ is functional.

General case

- ▶ Undecidable (Griffith 68),
- even if one alphabet is unary (Ibarra 78)

Summary – Transducers

Expressiveness:

Summary – Transducers

Expressiveness:

Equivalence: $(dom(T_1) = dom(T_2)$ is known)

input-deterministic	functional	non-deterministic
PTime	PTime	undec